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Abstract

This paper deals with the elastic interaction of multiple through-width delaminations in laminated plates subject to
static out of plane loading and deforming in cylindrical bending. A model has been formulated utilizing the classical
theory of the bending of beams and plates and accounting for non-frictional contact along the delamination faces.
Strong interaction effects arise between the delaminations including shielding and amplification of the energy release
rate and modification of the mode ratio as compared to a structure with only a single delamination. Such behavior
has been summarized in maps that completely characterize the response of a system of two delaminations in a cantilever
beam. The quasi-static propagation of the system of delaminations is also strongly controlled by the delamination inter-
actions, which lead to local snap-back and snap-through instabilities, crack arrest and crack pull-along. The results
show similarity to those for cracked infinite bodies, but the finite-thickness of the plate plays an important role and
gives rise to more complex behaviors. The stability of the equality of length of a system of n delaminations is controlled
by their spacing. Finite element calculations confirm that the model proposed here is accurate, except when the differ-
ence in the length of the interacting delaminations is less than a few times the separation of their planes.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to poor interlaminar properties, laminated fiber reinforced composites are susceptible to delamin-
ations caused for instance by manufacturing errors, edge effects or by such in service situations as impact,
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monotonic and cyclic loading. In the case of impact, typically many delaminations occur between layers of
different fiber orientation. The presence of the delaminations is often undetectable on the surface and may
significantly reduce the stiffness and load carrying capacity of the structure (Pavier and Clarke, 1995). When
a load is applied that causes sufficient interlaminar stresses, the delaminations may grow, often catastroph-
ically, separating the structure into two or more pieces and causing further reduction in stiffness and/or fail-
ure. While the behavior of structures in the presence of a single delamination has been widely studied since
the early work of Kanninen (1973, 1974) and others (see Massabo and Cox, 1999; Sridhar et al., 2002 for
work of the authors), the problem of the multiple delamination of laminated structures is not yet fully
understood. This paper examines the interaction of multiple delaminations in plates subject to static out
of plane loading and the effects this interaction has on the fracture behavior and structural response of
the laminate, using a cantilever plate as a case study.

An important interaction effect is contact that may occur between the delaminated plies. When there are
multiple delaminations, studies, such as those dealing with structures subject to in plane loadings (Larsson,
1991; Suemasu, 1993), have shown that extensive contact may occur along the delaminations faces. Contact
significantly affects the critical energy release rate for the extension of a delamination. Contact also intro-
duces regions in which friction may be important. The presence of contact will be shown later not to be
limited to delaminated structures subject to in-plane loading.

The effect of the interaction of the delaminations on the energy release rates is another important phe-
nomenon. Larsson (1991), using a model based on the theory of bending of plates to study delaminated
plates under in-plane loading, observed a discontinuity in the energy release rate of a delamination when
its length is equal to the length of other delaminations of the system. This discontinuity was thought to
be an anomalous product of the assumptions of plate theory; however, this paper will show that the dis-
continuity well approximates the actual behavior. Zheng and Sun (1998) showed that the effect of the inter-
actions between delaminations on the energy release rates depends on the through-thickness distance
between the delaminations. For the structure and crack configurations that they studied, they also observed
that the presence of a smaller delamination has little effect on the energy release rate of a delamination,
while the presence of a longer delamination may induce strong amplification or shielding. This paper will
show that in more general crack configurations, the presence of short delaminations may also strongly af-
fect the response.

The interaction effects also influence the stability of the equality of length of a system of n delaminations.
As it will be shown later, the delaminations of a stable system will tend to grow together, leading to an
increased capacity of the system to absorb energy and a more ductile structural response. An unstable sys-
tem of delaminations will have more localized delamination growth of only one or a small number of del-
aminations, leading to reduced energy absorption and a less ductile response. Suemasu and Majima (1996)
showed that an axisymmetric system of equally spaced, equal size, penny-shaped delaminations in a
clamped circular plate subject to a concentrated static force is stable. More general conclusions on the sta-
bility of systems of delaminations with unequally spaced cracks will be presented in the following.

The model proposed in this paper is based on the theory of bending of beams and plates and examines a
multiply delaminated plate subject to static, out of plane loading and deforming in cylindrical bending.
Non-frictional contact along the delamination surfaces is accounted for utilizing three approximations,
two of which allow closed form solutions of the problem. The energy release rate and the stress intensity
factors at each delamination crack tip are determined by the application of methods developed for beams
and plates with a single delamination. The results are quantified for the case of a cantilever beam with mul-
tiple edge delaminations. Shielding and amplification of the energy release rates of the cracks and the inter-
action effects on the macro structural response of the plate are examined. The model is validated through
finite element analyses.
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2. Theoretical model
2.1. Model assumptions

The problem under consideration is a thin laminated plate of thickness /# with n through width delam-
inations. A system of Cartesian coordinates x—y—z is introduced. Each delamination, with index i, is arbi-
trarily distributed across the thickness, with through-thickness position y; and length a;. The plate is subject
to out of plane loading. An exemplary plate, with an applied surface pressure ¢, is shown in Fig. 1a.

The material comprising the plate is assumed to be homogeneous, isotropic and linear elastic, with elas-
tic modulus £ and Poisson’s ratio v. The model is applicable to all laminates composed of isotropic layers of
the same material. With modifications to account for different material properties in the through thickness
direction, the model can also be applied to quasi-isotropic laminates and specially orthotropic laminates
(i.e. laminates composed of layers whose principal material directions are aligned with the reference axes)
with a large number of layers.

Only small deformations of the plate are considered, and plane strain conditions are assumed parallel to
the x-y plane so that the plate deforms in cylindrical bending. Therefore, the governing equations of the
plate correspond to those of a beam with a reduced Young’s modulus E = E/(1 — v?), where E is the lon-
gitudinal modulus. In the following analysis, the designation of beam and plate are identical. The classical
theory of bending of beams, which neglects shear deformation, is utilized to determine the response of the
delaminated structure.

The plate shown in Fig. 1a, is decomposed into multiple uncracked beam segments, defined by the coor-
dinates of the crack tips and continuity conditions are applied at the cross sections separating beam seg-
ments. For purposes of notation, the beam segments are numbered from top to bottom and left to right
in the structure, and delaminations are numbered from top to bottom. The height of beam segment k is
hy and its cross sectional moment of inertia and area are I, and Ay, respectively. The generalized displace-
ments of the centroidal axis of beam segment k are the axial and transverse displacements u; and wy, and
the bending rotation ¢;. The stress resultants per unit width are axial force Ny, shear force V) and bending
moment M), (Fig. 1b).
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Fig. 1. (a) Exemplary plate with multiple through width cracks subject to transverse loading. (b) Equilibrium of a beam segment,
showing stress resultants and contact pressures. (¢) Crack tip element separating beam segments identified by j, k and k + 1. The
dashed line is the path used for calculating the J integral.
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Assuming no shear deformation, y; = 0, the compatibility equations for the beam segment k are
Pp = Wi, & = Uky,  Ki = @, (1)

where ¢, is the axial deformation and x; is the bending curvature and, x denotes differentiation with respect
to the longitudinal coordinate x. The constitutive equations are

M = Eliiky = —ELWi ., Ni = EAper = EAjuy ., (2)
Equilibrium of the beam segment is given by:
M, —Vi= 07 Vk,x +Pk,k+1 = Pr—14 Nk,x = Oa (3)

where py x+1 and py_; 4 are either externally applied pressures or contact pressures acting on the lower and
upper surfaces of the segment (Fig. 1b).
At the ith crack tip, Fig. 1c, with coordinate x = x; separating the beam segments j, k and & + 1, the kine-
matic and static continuity conditions are
1 1
wj + 5 (hy = he)wie = i,y =5

Wj = W = Wi+,

hj =l )W)y = U,

Wix = Wix = Wit 1,

4
Nj=Ni+ Ni, ()
1 1
M; =M+ M —E(h; — hi )Ny +§(hj — M1 )N,
V,= Vit Vier.

The bending rotations of the beam segments at the crack tips, often referred to as root rotations, have been
assumed in (4) to be identical to one another.

In the plate shown in Fig. 1a, depending on the loading conditions and the geometry of the delamination
system, contact along the delamination surfaces may occur. This contact is assumed to be non-frictional,
which allows free sliding along the surfaces of a delamination, and is represented by the contact pressures,
Pii+1 and py_q 4. The presence of contact is simulated in three ways.

The first method is to assume that the deflections of the beams in the delaminated regions are the same.
Interpenetration along the delamination surfaces is then avoided; however, the beam segments in the del-
aminated region are also constrained from separating from each other, thus preventing any opening along
the delamination surfaces that may occur. This is referred to as the constrained-contact model and intro-
duces the constraint equation wy, = wy; between the delamination surfaces of beam segments k and k + 1.

The second method is to assume no contact interaction between the beam segments in the delaminated
region. This allows opening along the delamination surfaces; however, interpenetration can occur,
Wi # Wy+1. This is referred to as the unconstrained-contact model.

The final method is to consider elastic contact along the delamination surfaces. The elastic contact is
approximated using a Winkler foundation of linear springs, which represent the through-thickness stiffness
of the contacting beam segments and act to resist interpenetration along the delamination surfaces. The
stiffness of the springs for a contacting beam segment k is determined by considering one dimensional ten-
sion or compression of a beam element of height /;/2. This model neglects shear deformations in the beam
segment, which would lead to coupling of the springs (see Kerr (1964) for an in-depth discussion of foun-
dation models), in accordance with what has been assumed initially. The stiffness of the layer of springs
representing contact between two beam segments, k and k + 1, is given by:

2Er

ki1 (x) = H(wi(x) — wipr(x)) s
+

(5)



M.G. Andrews et al. | International Journal of Solids and Structures 43 (2006) 855-886 859

where E7is the through-thickness modulus of the material (E7 = E for an isotropic material) and H(") is the
Heaviside step function, H(¢) = {1,& > 0;0,& <0}, which ensures that the springs resist only interpenetra-
tion and do not resist opening between beam segments. The pressure exerted at the bottom and top of beam
segments k and k + 1 then follows as:

Prser1 (¥) = kg () (Wi (x) — w1 (x)). (6)

This method is referred to as the spring-contact model. Since the regions of contact and opening are gen-
erally not known a priori, the problem in this case becomes nonlinear.

It will be shown in the following that the constrained- and unconstrained-contact models define upper and
lower bound solutions of the spring-contact model. Both models can be recovered from the spring-contact
model by taking the appropriate limit of the spring stiffness in Eq. (5). For the constrained-contact model,
the limit &y 44+ — oo results in the constraint equation already defined, wy = wy;. For the unconstrained-
contact model, the limit as k; 44, = 0 results in p; 411(x) = 0, namely the absence of any contact pressure.
The constrained-and unconstrained-contact models, while less accurate than the spring-contact model, have
the advantage of leading to closed form solutions of the problem in cases that require a numerical solution
when treated with the spring-contact model. The solutions obtained with the simplified models are qualita-
tively similar to those of the spring-contact model and they can lead to insightful conclusions.

The proposed model relies on the three simplifying assumptions of zero shear deformation, absence of
relative beam root rotations at the crack tips and non-frictional contact. The influence of shear deformation
on the solution of single delamination problems is known to affect only quantitative details of the solution
and to be negligible if the delamination is sufficiently long. In multiple delamination problems a stronger
effect is expected when the delamination tips are close. However, current studies (Andrews et al., 2005)
show that this effect is not strong in the absence of contact near the delamination tips and is negligible com-
pared to the effect of unequal beam rotations at the delamination tips in the presence of contact.

The influence of the assumption of equal beam rotations at the crack tips has been shown previously to
affect only quantitative details of the solution for single delaminations, leading to limited underestimation
of the compliance of the system and the energy release rate for mode I fracture problems and to negligible
effects in mode II fracture problems. In the presence of multiple delaminations the effect of the assumption
is expected to be stronger due to the presence of contact between the crack faces. Different methods for
correcting root rotations have been proposed since the early work of Kanninen (1973, 1974) (see for in-
stance Williams, 1989; Sun and Pandey, 1994, Pandey and Sun, 1996; and Wang and Qiao, 2004). All meth-
ods, however, complicate the solution of the problem and as the crack interaction effects examined in this
work will arise independently of the quantitative details of crack face phenomena, a simpler level of approx-
imation has been utilized for this work.

Accounting for the presence of friction between the crack surfaces does not complicate the model greatly
and could lead to interesting alterations of the results presented in this paper for certain geometries. This
effect is not studied here and is the topic of current work (Andrews et al., 2005). The assumptions of the
model and their implications will be discussed further in Section 5.

2.2. Model solution

An arbitrary section of the beam shown in Fig. 1a may be intersected by m of the n delaminations in the
beam. Using the compatibility, equilibrium and constitutive equations defined above, the governing differ-
ential equations for the beam segments intersected by the section are

ElWixox + Prsrt = Pergy k=1,...,m+1, (7)
EAkuka:O, k:l,...,erl, (8)
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where the p’s are contact pressures between the beams, except for po; and p,,+1,,+> Which are externally
applied pressures on the external surfaces of the section. Eq. (8), referring to the axial displacements, are
not coupled and general solutions can be derived for all k’s. Similarly, Eq. (7), referring to the transverse
displacements, are not coupled and can be solved analytically within the approximation of unconstrained-
contact. Full coupling derives from the constraint equations, wy = wy41, of the constrained-contact model
that again allows for a closed form general solution.

For the spring-contact model, on the other hand, the p’s are given by Eq. (6), which results in a system
of m+ 1 coupled differential equations, Eq. (7). Because the springs representing contact do not act in
tension, contact may not occur between all of the beam segments intersected by this section. The presence
of traction-free crack surfaces simplifies the system of coupled Eq. (7) so that a set of subsystems char-
acterized by a lower number of coupled variables and equations can be defined. The limit cases are those
of full coupling of the wy for k =1,...,m+ 1, when contact exists between all segments, and no coupling
when all crack surfaces are opened. The coupled differential equations are linear with constant coeffi-
cients and the characteristic algebraic equations for the sub-systems can always been found. The general
closed form solution of a subsystem composed of one free segment and of 2 or 3 contacting beam seg-
ments is shown in Appendix A. A subsystem of more than three beam segments generally requires
numerical solution. General solutions of the subsystems for each section of the beam in all possible states
of opening and contact can then be determined and used in the iterative procedure to define the regions
of contact and opening.

The solution for the whole structure is determined by applying the kinematic and static boundary and
continuity conditions to define the constants of integration, C;, of the general solutions of systems (7) and
(8). If the unconstrained-contact or the constrained-contact model is used, the problem can then be solved in
closed form. If the unconstrained-contact model predicts no interpenetration between the crack surfaces, the
solution is exact. In addition, the regions of crack face interpenetration predicted through the uncon-
strained-contact model give a first approximation of the regions where contact is expected to occur within
the spring-contact model.

If the spring-contact model is used, the regions where crack face contact and opening take place are un-
known a priori and must be determined by an iterative solution process. The iterative process is initiated by
assuming an initial state of contact along the delamination surfaces. The beam segments formed by the divi-
sions at the crack tips are further subdivided at all coordinates where there is a change in contact state along
a delamination surface. At these coordinates, additional continuity conditions are imposed between subdi-
visions j and k, which correspond to Eqgs. (4) with the contributions from beam segment k + 1 removed. A
system of algebraic equations, corresponding to the boundary and continuity conditions at all divisions of
the beam and the general solutions of the governing Eqs. (7) and (8), is constructed based on this assumed
state of contact and is solved numerically for the unknown constants of integration, C; Utilizing the dis-
placement solution, updated regions of delamination surface interpenetration and opening are determined
for all delaminations in the system. The updated regions of interpenetration are then assumed to be in con-
tact and a new system of algebraic equations is constructed and solved for the new C;’s. A grid of points is
introduced along the axis of each beam segment and the convergence of the solution is checked by consid-
ering the norm of the transverse displacements at these locations. The process is repeated until convergence
of the solution to a specified tolerance. For all cases examined in this paper, convergence of the solution has
been reached easily with only a limited number of iterations.

2.3. Energy release rate and mode decomposition
It is assumed that the n delaminations in the structure are constrained to propagate along the low tough-

ness fracture paths defined by their planes. The energy release rate for the individual coplanar extension of a
delamination tip in this system is determined by application of the J-Integral (Rice, 1968) along a
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path around the delamination tip. The expression for the J-integral for crack tip i, at the coordinate x;, sep-
arating beam segments j, k and k + 1 (Fig. 1c), is

2 2
g.J1<Mi N M, N_£N>

e M il 9
2\E1, "EA, TEl., " Edw,  EI, EA, (%2)

Xi

This expression is identical to the expression valid for beams with a single delamination, as is explained in the
following. Each crack tip in the beam shown in Fig. 1a can be extracted from the structure as an equivalent
beam with a single delamination whose upper and lower surfaces are defined either by the surfaces of the
plate or by other delaminations, Fig. 1c. This equivalent single beam is subject to end forces and moments
as well as possible contact pressures on its upper and lower surfaces. The path for the J-integral, shown in
Fig. 1c, is taken at the crack tip cross sections immediately preceding and following the crack tip and along
the upper and lower surfaces of the equivalent beam. For this path, the contact pressures on the upper and
lower surfaces do not enter the expression for the J-integral. If there is another delamination tip at the same
coordinate x; the energy release rate is determined as the limit for Ax; tending to zero of Eq. (9a) applied to a
system in which the length of the delamination of interest has been increased (the sign of Ax; is chosen cor-
responding to an increase in delamination length) by incrementing the position of the crack tip to x; + Ax;.
Expression (9a) is only valid when the rotations of the beams at the crack tips are assumed to be the same,
and must be modified accordingly if this assumption is relaxed (see Section 5). Similarly, the equation could
be modified to include the contributions due to the shear deformations along the beams.

The above approach cannot be applied to analyze the simultaneous propagation of m delamination tips
that have the same coordinate x,,,. Instead, the energy release rate in this case is conveniently determined by
the variation of the total potential energy with respect to simultaneous unit extension da. The energy release
rate for each of the delaminations under this condition is

_taw

G —
" mda’

(9b)
where W is the total potential energy of the system. The value of da should be chosen such that it corre-
sponds to an increase in length of the delaminations. For the coordinate system described in Fig. 1, the
extension of the left tips of delaminations corresponds to da = —dx,, and the extension of the right tips
of the delaminations corresponds to da = dx,,. The variation of the total potential energy is also used to
analyze the simultaneous propagation of m delamination tips that do not share the same coordinate.

The conditions at the crack tips in the general beam of Fig. 1a are generally mixed mode. The energy re-
lease rate calculated using Egs. (9a) and (9b) includes both the mode I and mode II components, %; and %yy;.
Separation of the modes of fracture is accomplished by using the method proposed by Suo (1990), Suo and
Hutchinson (1990) and Hutchinson and Suo (1992). They derived analytical expressions for the mixed mode
stress intensity factors for a beam with a single crack, with total energy release rate given by Eq. (9a), in terms
of the stress resultants, bending moments and normal forces, at the cross sections immediately preceding and
following the crack tip, and geometrical parameters. These expressions depend on an additional parameter
that can be derived with a rigorous two-dimensional solution of the problem. In the model proposed in this
paper, the method is applied to the equivalent beam with a single crack shown in Fig. 1c with energy release
rate given by Eq. (9a) and is thus valid for each crack tip in the system.

3. Cantilever beam with n equal length delaminations

The first study problem is a cantilever beam of length L with n through width, arbitrarily spaced edge
delaminations (Fig. 2) subjected to a static concentrated out of plane force P at its free end. This simple



862 M.G. Andrews et al. | International Journal of Solids and Structures 43 (2006) 855-886

A

NNNNNNS
=
=

Xi | aj

y

Fig. 2. Cantilever beam with n edge cracks subject to a transverse load P.

structure provides an analytical/semi-analytical description of how multiple delaminations interact. This
problem yields results that are identical to those for an edge cracked simply supported beam, loaded by
an out of plane force at its mid span. Solutions for simply supported or fixed plates with mid-span, out
of plane loading can be simply obtained by modifying the boundary conditions at x =0 and x = L. The
solution can also be easily extended to circular axisymmetric plates loaded by concentrated out of plane
forces at the centers.

In this problem no axial forces are developed; thus the equations governing the axial displacements are
ignored. The boundary conditions for this problem are

wo =0, wo, =0 atx=0,
Jjtn

P=> Vi, M=0, k=j,...j+n, (10)
k=j

Wi = Wiy, kzj,...,j—l—n—latx:L,

where j is the index of the uppermost beam segment at the free end of the beam; and as before, the sub-
scripts define the number of the beam segments. Contact of the beam segments under the load point is
approximated by assuming that their deflections at the free end are equal. This assumption is exact for
the unconstrained-contact model and accurate for the spring-contact model if the delaminations are long.
The static and kinematic continuity conditions at each crack tip are given by Eq. (4).

In the simplest configuration, the delaminations in the beam shown in Fig. 2 are of the same length a. In
this configuration, the beam is divided up into n + 2 beam segments, n + 1 segments forming the cracked
region, and one segment forming the uncracked region. Each crack tip is located at the same coordinate
x = L — a. The continuity conditions (4) are modified as follows:

Wy = Wy, Wox =Wy, k=1,...,n4+1,
ntl ntl (11)

M, = ;Mk, Vo = ; V.

Combining the general solutions for each beam segment for the three contact models allows this system of
4(n + 2) boundary and continuity equations to be solved in closed form (Appendix B). The three methods
yield identical solutions, which shows that the deflections of the beam segments in the cracked region of the
beam are identical and there is no contact or opening along the crack faces.

3.1. Energy release rates for simultaneous propagation of equal length delaminations
The energy release rate for each delamination when the delaminations are assumed to propagate simul-

taneously is conveniently determined by the variation of the total potential energy W due to a unit prop-
agation of the cracks, Eq. (9b):
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where I is the moment of inertia of the intact portion of the beam and I is the moment of inertia of the
beam segment in the cracked portion of the beam. The next sections will show that for n equally spaced
delaminations the energy release rate for simultaneous propagation is higher than the energy release rate
corresponding to the propagation of one of the delaminations of the system. On the other hand, when
the delaminations are unequally spaced, the response is controlled by the transverse position of the
delaminations.

Eq. (12) shows that if the delaminations are uniformly spaced across the entire cross section, then as the
number of delaminations increases, the energy release rate per delamination also increases. If on the other
hand, the cracks are confined to a band, then as the number of cracks within the band increases the energy
release rate per crack decreases. The latter case could represent damage localization in the beam. If a crack
growth criterion based on the total energy release rate is applied, the first case would correspond to a de-
crease of the critical load on increasing the number of cracks, and the second case to an increase of the
critical load. However, for the second case, since the cracks are not equally spaced, the assumption of
simultaneous propagation may not be valid and the critical load could be defined by the propagation of
only one of the cracks of the system.

3.2. Stability of the equality of length in a system of equal length delaminations

The equality of length will be said to be stable in a system of equal length delaminations if the system
recovers the condition of equal length after the lengths of one or more cracks are perturbed.' It will be
shown later that, for a fixed number of delaminations, the energy absorption is higher if the equality of
length is stable than if it is not.

3.2.1. Equally spaced delaminations

This special case was previously examined by Suemasu and Majima (1996) who investigated the stability
of the equality of length of an axisymmetric system of equally spaced, penny-shaped delaminations in a
clamped circular plate subject to a concentrated out-of-plane load. The study was performed under the sim-
plifying kinematic assumption of constrained-contact. This assumption is relaxed here, and the stability of
the equality of length is studied using the spring-contact model. The problem is greatly simplified by noting
that in the limit of the delaminations having the same length, the solution of the spring-contact model is
identical to that of the unconstrained-contact model. Closed form solutions can therefore be found, which
are detailed in Appendix C and summarized below.

An ideal system of equal length, equally spaced delaminations propagates when the energy release rate,
given by Eq. (12), equals the fracture energy of the material. If a positive perturbation of the length of crack
i in the system is considered, then the energy release rate for the propagation of that crack is lower than that
corresponding to the simultaneous propagation of the remaining cracks. Thus, using a fracture criterion
based on the total energy release rate, the remaining delaminations will grow up to the length of the per-
turbed delamination and equality of length will be restored. Conversely, if a negative perturbation of the
length of crack 7 is considered, then the energy release rate of crack i is higher that of the remaining cracks:
the system is again stable. Since a negative perturbation of one crack is identical to a positive perturbation

! The term stability is used here to refer to changes in the crack geometry and not the question of whether the crack growth is quasi-
static (stable) or dynamic (unstable).
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of the remaining cracks and vice versa, conclusions on the effect of positive or negative perturbations of one
crack will also hold for perturbations of a generic number of cracks.

The same conclusions are reached if the simplifying kinematic assumption of constrained contact is
used. The analysis, which is similar to that presented in the Appendix C, is not presented here. Suemasu
and Majima (1996) obtained the same results for axisymmetric clamped circular plates.

3.2.2. Unequally spaced delaminations

A system of unequally spaced, equal length delaminations does not always grow self-similarly, even in
the absence of length perturbations. The question of stability of the equality of length is controlled by
the through-thickness position of the delaminations. The map of Fig. 3 refers to a two-crack system and
has been constructed by using the spring-contact model. Similar results are obtained using the uncon-
strained-contact model. Fig. 3 shows regions in which the energy release rates for the propagation of one
of the two cracks, %y and %, and for their simultaneous propagation, %5, have different ordering. The
map is a function of the through-thickness positions of the two cracks. The upper crack is located at a dis-
tance /13 from the upper surface of the beam and the lower crack is located at a distance /5 from the lower
surface of the beam, as shown in the inset in the figure.

The map shows three regions: region I in which %y > max(%;,%s); region II in which
9y > max(Yy, %L); and region III in which ¥ > max(%y,¥g). Thus in regions I and III, only one crack
will propagate when critical conditions are satisfied, while in region II, both cracks propagate together.
Furthermore, in regions I and III, the system is more unstable (increasing difference between the highest
and next highest values of 9y, %, and %) under positive perturbations of the length of the upper crack
(region I) and to negative perturbations of the length of the lower crack (region III).

For cases lying in region II the system is stable to both positive and negative perturbations. Thus, in this
region the delaminations will always grow self-similarly. The solution of equally spaced delaminations is
represented in the diagram by a point in the shaded pocket at i3 = hs = 1/3h.

In the case of unequally spaced delaminations, the constrained-contact model yields a map with a larger
region of stability than that shown in Fig. 3. The region is shown in Fig. D.1b. This difference highlights the
limitations of the simplified contact models when applied to general delamination geometries.

In a real structure, the location of the delaminations through the thickness of the plate will depend on the
internal structure of the material and the loading conditions, which therefore determine the conditions for
the stability of the equality of length of the system.
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Fig. 3. Map of regions of different energy release rate for a system with two cracks.
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Fig. 4. Dimensionless diagram of the critical load for crack propagation versus load—point displacement for a cantilever beam of n
equal length and equally spaced cracks.

3.3. Macrostructural response

The macrostructural behavior of a plate of length 102 with n equally spaced delaminations, A, =
hf/(n+ 1), of equal initial length ay = 24 is shown in Fig. 4. The delaminations have been assumed to prop-
agate when 4, = %, where 9., is the fracture energy of the material. The figure shows the normalized crit-
ical load for the propagation of the crack system as a function of the normalized load point displacement.
As the number of delaminations increases, the critical load for initial growth of the delaminations decreases
and the post-peak behavior of the structure becomes more ductile. This is to be expected as diffuse damage
leads to a more ductile structural response and increased energy absorption. In contrast, localized damage,
for instance the propagation of a single crack, results in an increased ultimate capacity of the structure, but
in a less ductile response and decreased energy absorption.

4. Cantilever beam with two unequal length delaminations

In a general system of delaminations with unequal length and spacing, Eq. (12) and the conclusions and
results of the previous section do not apply and the general problem defined by Eq. (7) must be solved in
order to define energy release rates. In this section, a system of only two cracks is studied, in which many of
the characteristics expected of general cases can be observed, without distracting complexity. In most
cases, the behavior of the system depends on only three dependent variables, allowing complete visualiza-
tion of the interaction effects.

A cantilever beam of length L and height / with two edge delaminations of arbitrary length and spacing
is shown in Fig. 5. The length of the upper delamination is ay; and the length of the lower delamination is
ar. The through-thickness positions of the delaminations are defined by /3 and /s, where /5 is the distance
of the upper delaminations from the upper surface of the beam and /s is the distance of the lower delam-
ination from the lower surface of the beam. Utilizing the three approximations for treating contact, the sys-
tem of equations formed by the boundary conditions Egs. (10) and continuity conditions Egs. (4) together
with Eq. (7) has been solved for the three possible configurations of the system, ay; = ay. (Section 3), ay > ap.
(Fig. 5a) and ay < ar, (Fig. 5b).

4.1. Energy release rate

Solutions for the energy release rate of the different configurations of the system are presented in Appen-
dix D. Appendix A also presents in Fig. D.1 maps constructed for a general through-thickness distribution
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Fig. 5. Cantilever beam with two arbitrarily spaced cracks.

and lengths of the delaminations that show regions in which the energy release rate of one of the cracks is
higher or lower than that of the other crack and can be used to analyze crack propagation in the system.

Fig. 6 shows exemplary solutions for a system of two equally spaced cracks (53 = hs = h/3). Fig. 6a de-
fines the energy release rate of the upper crack on varying its length, while the length of the lower crack is
kept fixed at a;/h = 5.0. Fig. 6b defines the energy release rate of the lower crack on varying its length,
while the length of the upper crack is kept fixed at ay/h = 5.0. The figures show a comparison of the energy
release rates calculated using the three approximations of contact (solid curve = spring-contact, dashed
curve = unconstrained-contact and dash-dot curve = constrained-contact). Numerical results from these fig-
ures and others show that the unconstrained-and constrained-contact models define upper and lower bounds
of the spring-contact model for all through-thickness distributions of the cracks. Fig. 6 also shows by the
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Fig. 6. Normalized energy release rates of two equally spaced cracks in the beam of Fig. 5 as a function of the length of the cracks.
(a) Upper crack, (b) lower crack.
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thin line the energy release rate of the crack in the absence of the other crack, or the single crack limit. The
limit is approached when the interaction effects disappear. The constrained-contact model reaches this limit
immediately after the discontinuity in energy release rate. Zheng and Sun (1998) showed similar behavior
for the longer delamination of two central, through-width delaminations in a three-point bending specimen.

Fig. 6a and b show that in the equally spaced delamination system studied there is a strong interaction
effect on the energy release rate, which is always amplified with respect to the single crack solution. The next
section will show that different solutions, characterized by shielding, amplification or a combination of
both, are found for other crack systems. In addition seems out of place reach the same length there are neg-
ative discontinuities of the same magnitude in their energy release rates. It will be shown in Section 5 that
the discontinuity is a good approximation of a sharp change in energy release rate shown by a full numer-
ical solution of the problem. In other material systems a similar behavior has been observed. For instance,
from the 2-D solution of an infinite body with a main crack interacting with ordered arrays of micro-cracks,
sharp jumps in the stress intensity factors have been noted as the main crack tip moves through the array
(Brencich and Carpinteri, 1996).

4.2. Shielding and amplification of the energy release rate

As observed in the previous section, a delamination in a system of delaminations can either amplify or
shield the energy release rates of the other delaminations or have no influence on them. This effect can be
synthesized for the crack system of Fig. 5 by considering diagrams of the energy release rate of a crack, ¥;,
normalized with respect to the energy release rate of the same crack when the other crack is not present, %,,.

The energy release rate of a crack is always amplified by the presence of a shorter crack independent of
their through-thickness positions, which only affect the magnitude of the amplification (the constrained-con-
tact model erroneously predicts for this regime neither amplification or shielding). A longer crack can have
different effects on a shorter crack, with the sense of the effect depending on their through-thickness posi-
tions and, in some regimes, their lengths. The maps shown in Fig. 7a and b have been obtained using the
spring-contact model (identical results are obtained assuming unconstrained-contact). The dashed lines in
the figures are solutions of the constrained-contact model.

If the point describing the positions of the two delaminations falls in the upper region (III), the shorter
delamination will always be shielded by the longer. The magnitude of the shielding effect depends on their
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Fig. 7. Map of shielding and amplification of the energy release rate for a crack in the presence of a longer crack (schematic of Fig. 5).
Shaded regions (II) indicate a combination of shielding and amplification depending on the length of the delaminations. (a) Upper
crack, (b) lower crack.
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lengths. If the point falls in the lower region (I), the energy release rate of the shorter delamination will al-
ways be amplified by the longer. If the point falls in the middle region (II), either amplification or shielding
can occur for the shorter crack, depending on the two lengths. The solution of the constrained-contact
model does not have a region of mixed shielding and amplification. The dashed line in Fig. 7 corresponds
to crack configurations where 4, = %, and separates regions of shielding (III) and amplification (I). This
simplified model is unable to predict the complex details of multiply delaminated systems.

An example considering the energy release rate of the lower delamination for a through-thickness posi-
tion of the cracks that falls in region (I), showing amplification of ¥, is presented in Fig. 8a. The figure
shows % normalized with respect to %, on varying a; with the length of the upper crack fixed at
ay/h = 5.0. When the lower crack is shorter than the upper crack, there is a strong amplification of %, with
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Fig. 8. Examples of shielding and amplification of the energy release rate of the lower crack in the two-crack system of Fig. 5 (upper
crack length fixed).
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an amplification factor around 3. The amplification is then reduced by the discontinuity (localized shielding
effect), when the two cracks have the same length, and it decreases on increasing the length of the crack. An
example of shielding of %, a point in region (III), is shown in Fig. 8c. In this case the discontinuity in %
corresponds to a localized amplification effect. An example of both shielding and amplification depending
on the lengths of the delaminations, a point in region (II), is shown in Fig. 8b.

In this structure the shielding of one of the delaminations is always accompanied by the amplification of
the other delamination. Among all the possible through-thickness distributions and lengths of the delam-
inations, the effect of the interaction can be very strong, and it has been verified numerically that the energy
release rate can be amplified up to 600% by the presence of a much longer delamination.

Brencich and Carpinteri (1996) showed qualitatively similar amplification and shielding effects when
considering the interactions of a main crack propagating through a pair of symmetrically located micro-
cracks in an infinite body. For this problem the magnitude of the shielding and amplification depends
on the spacing between the cracks, but the qualitative behavior of the shielding and amplification is unaf-
fected by this distance. In contrast, for the structural delaminations discussed in this paper, due to geomet-
rical effects, the through-thickness position of the delamination may alter the condition of shielding or
amplification, not just their magnitudes. This is in agreement with the numerical study of the interaction
of two central delaminations in a three-point bending specimen of Zheng and Sun (1998).

4.3. Mode ratio
Mode decomposition has been performed for the exemplary system of two equally spaced delaminations.

Fig. 9 shows the relative amount of mode II to mode I defined by the phase angle ¥ = tan~!(Ky;/K;). Fig.
9a defines Wy for the upper delamination on varying its length, while the length of the lower delamination
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Fig. 9. Relative amount of mode II to mode I stress intensity factors in the two-crack system of Fig. 5.



870 M.G. Andrews et al. | International Journal of Solids and Structures 43 (2006) 855-886

is kept fixed at ap/h = 5.0. Fig. 9b defines ¥y for the lower delamination on varying its length, while the
length of the upper delamination is kept fixed at ay/h = 5.0.

The figures compare solutions obtained using the spring-contact model (thick solid line) with the uncon-
strained-contact model (dashed line) and the solution of a single delamination ¥, in the absence of the
other delamination (thin line). For a single delamination, the relative amount of mode II to mode I is inde-
pendent of the delamination length and given by ¥y, = 66.7° for the upper delamination and by ¥ = 90°
for the lower delamination (the lower delamination experiences pure mode II conditions due to localized
contact at the crack tip).

Fig. 9a shows that when the upper delamination is shorter than the lower, the conditions are pure mode
II. Comparison with the single delamination solution highlights the strong effect produced by the presence
of the lower delamination. When the upper delamination reaches the length of the lower delamination there
is a sharp transition and the mode I component is suddenly increased above the corresponding single
delamination solution (thin line). As the upper crack lengthens, the interaction decreases and the solution
tends to the single delamination limit. The dashed curve highlights the limitations of the simplified uncon-
strained-contact model, which predicts an unrealistic phase angle ¥ > 90°, due to the interpenetration of the
delamination surfaces.

Fig. 9b shows that the lower delamination is in pure mode II conditions due to contact at the delami-
nation tip when its length is shorter than the length of the upper delamination and this solution coincides
with the solution of the single delamination. When the lower delamination approaches the length of the
upper delamination, there is a sudden transition (solid curve) to a large value of the mode I component.
The interaction effect then disappears quickly as the lower delamination lengthens and the solution tends
again to the solution of a single delamination. Interestingly, when the lower delamination is longer, the
bending theory model always predicts opening at the lower delamination tip even when the mode decom-
position method defines a negative mode I stress intensity factor and therefore pure mode II conditions
(shown in Fig. 9b for a; /h > 6.75). This fictitious opening displacement field is a consequence of neglecting
the root rotations at the delamination tip, which if properly accounted for would restore contact (Andrews
et al., 2005).

4.4. Delamination growth and macro-structural behavior

To investigate the macro-structural response of the plate, the quasi-static propagation of the system of
two delaminations shown in Fig. 5 has been studied using the spring-contact model. A delamination has
been assumed to propagate when its energy release rate equals the fracture energy of the material, %.,.
The cracks have been assumed to grow under delamination length control, which allows virtual delamina-
tion growth branches to be followed. Several cases, identified by different through-thickness positions of the
delaminations and different notch lengths as shown in Figs. 10-13, have been considered to highlight a
number of interesting macrostructural responses of the system. The figures show the critical load for crack
propagation as a function of the load point deflection. Also shown in the inset in the figures is the evolution
of the lengths of the delaminations; the dashed line shows the length of the lower delamination and the solid
line shows the length of the upper delamination during the loading process.

For the first delamination configuration, shown in Fig. 10, the lower delamination starts to propagate
first at (A). The propagation is unstable up to point (B), where the delamination reaches the upper delam-
ination. At this point the delamination arrests and the delamination system can be made to propagate only
by increasing the applied load. This behavior is due to a negative discontinuity, shielding, in the energy re-
lease rate. After point (C) the lower delamination continues to propagate unstably until the structure fails.
A snap-back instability is present as the lower delamination grows to the upper delamination.

In the case shown in Fig. 11 the lower delamination begins to propagate unstably at point (A). At (B) the
delaminations are of the same length and there is a sudden drop in the critical load, corresponding to a
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Fig. 10. Dimensionless diagram of the critical load for crack propagation versus load—point displacement in the two-crack system of
Fig. 5: snap-back instability and local increase in critical load due to a local shielding effect.
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Fig. 11. Dimensionless diagram of the critical load for crack propagation versus load—point displacement in the two-crack system of
Fig. 5: snap-back instability with local drop in critical load due to a local amplification effect.
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Fig. 5: snap-through instability and hyper-strength phenomenon due to a local shielding effect.
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Fig. 13. Dimensionless diagram of the critical load for crack propagation versus load—point displacement in the two-crack system of
Fig. 5: crack pull along.

positive discontinuity, amplification, of the energy release rate. The lower delamination then continues to
propagate unstably.

The case shown in Fig. 12 is similar to that examined in Fig. 10. However in this case the new critical
load due to the negative discontinuity, shielding, in the energy release rate is higher than the initial load for
delamination propagation. This is an interesting example of hyperstrength, which is defined as the condi-
tion that the ultimate load of the structure exceeds the load corresponding to the first propagation of one of
the delaminations of the system even in the absence of any strengthening mechanisms. The hyperstrength is
produced by the elastic interactions of the parallel delaminations that create local shielding and hardening
effects, leading to a snap-through instability.

An example of crack pull-along, in which the finite propagation of one delamination causes the propa-
gation of the other delamination, is shown in Fig. 13. In this case the lower delamination propagates first at
point (A). When it reaches the second delamination at point (B), there is an increase in critical load due to a
negative discontinuity in energy release rate. The lower delamination continues to propagate at point (C).
At point (D), the upper delamination begins to propagate, and both delaminations continue to propagate,
keeping a constant relative length until the structure fails. This behavior occurs for through-thickness dis-
tributions of the delaminations that fall just to the right or just above the shaded region of the map of Fig.
D.la, and just to the right of the shaded region in the map of Fig. D.1b.

5. Validation of the proposed model

The proposed model, applied to the problem of a cantilever beam with two edge cracks, has been val-
idated using the finite element method (FEM) and the commercial code ANSYS (5.5). The mesh consisted
of plane stress isoparametric triangular elements. To obtain an accurate solution, including relative crack
displacements, while keeping the number of degrees of freedom low, a coarse mesh was used for the body of
the beam and very fine meshes around each crack tip and along areas of contact. The stress singularities at
the crack tips were modeled with rosettes of quarter point elements. Contact along the crack faces was sim-
ulated using gap elements that prevent interpenetration of the beams with stiff linear springs. Convergence
of the solution was checked by varying the size and number of elements and stiffnesses of the gap springs.
Energy release rates were calculated by two methods, the J-Integral, Rice (1968), and the displacement cor-
relation method, Chan et al. (1970), which was also used to evaluate the mode ratio. The path of the J-inte-
gral was chosen within a fine mesh region so that it encompassed sufficient elements for its value to
converge.
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5.1. Comparison of energy release rates

The energy release rates determined by the finite element method and the present spring-contact model
are shown in Fig. 14a for a system of two equally spaced cracks (13 = hs = h/3). The error between the two
solutions is shown in Fig. 14b. In the figure, the normalized energy release rate of the upper crack is
depicted as a function of the length of the upper crack. The length of the lower crack is kept fixed at
aL/h =35.0.

Fig. 14a and b show that the results of the proposed model generally agree with the finite element results.
When the cracks reach the same length, the finite element solution predicts a continuous transition in en-
ergy release rate. This transition matches the discontinuity in energy release rate predicted by the beam the-
ory model.

Short cracks (ay < 2h for the geometry of Fig. 14) are characterized by large errors due to the well-
known limitations of classical beam theory. As expected, the error drops when the length of the crack in-
creases, provided it is not similar to the length of the other crack, to less than 5% when 2/ < ay < 4.6h or
ay > 7.0h. Where the two cracks have similar lengths and the energy release rate is characterized by a dis-
continuity, the error increases significantly (up to 30% for the geometry studied in Fig. 14). The width of
this region is given by a few times the separation of the planes of the interacting cracks and depends on the
conditions of the crack surfaces (contact or opening). For the geometry studied in Fig. 14, the error is above
5% for 4.6h < ay < 7.0h. The interval is not symmetric about the length of the lower crack, a; = 5h, because
of the different conditions along the crack surfaces when the upper crack is shorter (opening) or longer
(contact) than the lower. Numerical calculations show that behaviors similar to that observed in Fig. 14
characterize all possible crack configurations and that the width of the region where the error increases sig-
nificantly is always a few times the distance between the planes of the cracks.
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Fig. 14. (a) Energy release rate of the upper crack in the two-crack system of Fig. 5: comparison between FE and proposed model
results. (b) Relative error between the solutions of (a) (dashed line indicates a 5% relative error).
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5.2. Comparison of mode ratios

The relative amount of mode II to mode I as measured by the phase angle ¥ = tan~!(Ky;/K;) determined
by the finite element method and the model presented in this paper utilizing the spring-contact approxima-
tion is shown in Fig. 15. Fig. 15a shows the phase angle of the upper crack as a function of the length of the
upper crack, while keeping the length of the lower crack fixed at a; /h = 5.0. Fig. 15b shows the phase angle
of the lower crack while keeping the length of the upper crack fixed at ay/h = 5.0.

The phase angles of the lower crack determined by the two models, shown in Fig. 15b, agree well with
the relative error peaking near the discontinuity at only 10%. Fig. 15a instead shows a significant difference,
with an error up to 26%, between the results of the bending theory model and FEM when the upper crack is
longer and there is contact along both delamination surfaces. When the lower crack is longer and there is no
contact along the delamination surfaces, the error is instead very low. This result confirms what has already
been observed for the energy release rate. However, the width of the region where the relative error on the
mode ratio is quite large and is greater than that corresponding to the energy release rate.

5.3. Discussion

The relative error between the model and the FE predictions, as observed in Figs. 14 and 15, is greater
when there is contact between the crack surfaces. This is mainly due to the assumption of the proposed
model of zero relative root rotations of the sublaminates at the crack tips that leads to an overestimation
of the contact pressures. The effects of the root rotations on the contact pressures and thus on the energy
release rate and mode ratio are most significant when the cracks are close to the same length |ay — ar | <h
and are stronger on the mode ratio. When there is no contact along the crack faces, neglecting the root
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Fig. 15. Relative amount of mode II to mode I for a two-crack system: comparison between proposed model and FE results.
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Fig. 16. Comparison of predicted contact pressures along the faces of the upper crack in the two-crack system (dashed line: contact
pressures using the FE displacement field and spring-contact approximation).

rotations does not significantly affect the solution, confirming what has already been observed for single
delaminations loaded primarily in shear.

The contact pressure distribution along the surfaces of the upper crack, for equally spaced cracks with
lengths ay/h = 5.5 and a; /h = 5, predicted by the proposed model and the FE method are shown in Fig. 16
as a function of the position along the crack. The model predicts a peak pressure double that of the FE
solution. These discrepancies in the solutions cannot be attributed to the contact approximation used in
the model: using the centerline beam deflections obtained in the FE solution and Eq. (6) to predict the con-
tact pressure leads to the pressures identified by the dashed curve that for magnitude and shape closely fol-
low the finite element solution. Including shear deformations in the model improves the pressure
distribution, but does not substantially improve the values of the energy release rate.

The overestimation of the contact pressures is associated with significant errors in the stress resultants at
the crack tip. This is shown in Table 1 where bending moment and shear force obtained using the proposed
model are compared with the FE results (rows 2 and 1). Table 1 also compares the energy release rates and
phase angles obtained using the proposed model (row 2) and the FEM (row 1) and highlights the previously
noted large errors. If the actual FE stress resultants are used instead of the model resultants in Eq. (9a) and
in the expressions of Suo and Hutchinson for the stress intensity factors, the solution is still affected by large
errors. This is shown in row 3 of the table. The reason for this discrepancy is that both Eq. (9a) for the
energy release rate and Suo and Hutchinson’s expressions do not account for the contributions due to
the shear deformations along the beams and the deformations at the crack tip cross sections (i.e., root
rotations).

The expression (9a) for the energy release rate can be modified to account for these effects as follows:
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G =J == —L e ) 4 ——L L 1oV,
2 (Z (EI; Ga, TEa, 7)) TEL T wGa, EA, 00

1=k J

, (13)

Xi

where % is the shear modulus, x is the shear correction coefficient (5/6 for a rectangular cross section),
V' and ¢ are the shear resultant and the bending rotation respectively.

Liet al. (2004) recently modified the stress intensity factor expressions derived by Suo and Hutchinson to
include the contributions of the shear deformations along the beam and the crack tip deformations numer-
ically. Wang and Qiao (2004) proposed an analytical extension of the method of Suo and Hutchinson.
Rows (4) and (5) in the Table show solutions obtained using these two methods. Both methods lead to sub-
stantial improvement in the solutions. The method of Wand and Qiao relies on the assumptions of plate
theory in order to determine the crack tip rotations, and thus is not as accurate as the numerical solution
of Li et al.
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Table 1
Stress resultants, energy release rate and phase angle of the upper crack
Moment— Moment—  Shear— Shear— vy, GuEh/P?,
upper lower upper lower % Error from % Error from FEM
beam arm  beam arm  beam arm beam arm FEM
(M/Ph) (M/Ph) (V/P) (V/P)
(1)  FE stress resultants —0.967 —4.535 —0.644 1.644 72.4° 428.59
% and ¥ Displacement
correlation Technique
(2) Proposed model —0.300 —5.200 —1.752 2.752 54.2°, 380.89,
25.18% 11.13%
(3) FE stress resultants —0.967 —4.535 —0.644 1.644 80.9°, 386.14,
% Eq. (9a) —11.66% 9.91%
¥ after Suo and Hutchinson
(4) FE stress resultants —0.967 —4.535 —0.644 1.644 72.2°, 430.18,
4, ¥ after Li and Thouless 0.31% —0.37%
(5) FE stress resultants —0.967 —4.535 —0.644 1.644 74.4°, 417.65,
% Eq. (13) —2.71% 2.55%

¥ after Wang and Qiao

Equally spaced cracks, ay/h = 5.5, ap/h =35, h/L=0.1.

The observations above highlight that the model proposed in this paper could be improved substantially
by: removing the assumption of zero relative root rotations at the crack tips, for instance by using localized
linear elastic rotational springs (Pandey and Sun, 1996); including the contribution of shear deformations
along the beams; applying Eq. (13) for the energy release rate and an extended solution, e.g. of Li et al.
(2004) or Wang and Qiao (2004), for the decomposition of the modes of fracture. This would lead to a more
accurate quantitative prediction of the displacement fields along the crack surfaces and the fracture param-
eters of the system. Such an approach would become necessary, and would probably be sufficient for plane
conditions, if the influence of crack-wake mechanisms, such as bridging or cohesive mechanisms and fric-
tion, on the fracture behavior of multiply delaminated plates is to be investigated.

6. Application of the proposed model to the design
6.1. Beam theory for quantitative analyses

Elastic analyses of laminates that are based on plate elements are widely used and accurate for many
design predictions. Extended laminar sheets comprising thin plies do indeed very nearly satisfy the condi-
tions of strain distribution necessary for the reduced degrees of freedom in beam (or plate) theory to be
sufficient.

As shown in this paper, modeling delamination fracture is, however, much more challenging. In multiply
delaminated beams as well as other more complex structures, delaminations propagate in mixed mode, of-
ten predominantly in shear (modes II and III). Crack propagation, even in the absence of a through-thick-
ness reinforcement (stitching, pins, etc.), will therefore be very strongly and commonly influenced by
contact forces and crack face friction. Other crack wake effects, such as bridging by fibers or craze fibrils,
might also be important. The tractions imposed on the fracture surfaces by such effects will depend, pos-
sibly sensitively, on the mixed mode crack displacement vector; and therefore accurate prediction of the
crack displacement becomes a prerequisite to a full quantitative model of delamination.
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The question of whether plate or beam theory methods can deal with quantitative delamination analysis
turns on the success of estimates of root rotations, which control the accuracy of crack displacement predic-
tions near crack tips. Our current work and work in the literature (Andrews et al., 2005; Sun and Pandey,
1994; Pandey and Sun, 1996) encourages the view that reasonably simple root rotation corrections can in-
deed restore accuracy. If so, beam theory may be not only useful but even the preferred method, especially
for plane problems, including many common experimental tests, since it yields straightforward, relatively
small numerical problems and, in many important cases and limits, highly instructive analytical results.

Competition in accurate delamination modeling will come from modern cohesive element methods,
which are extensions of finite element formulations to include elements that can introduce bridging and
contact tractions in convenient ways. Cohesive models are an attractive, physically based formulation of
nonlinear crack tip and crack wake processes, very well suited to complex 3D configurations with arbitrary
mode mixtures. They have a growing record of successful simulations of experiments (e.g., Remmers et al.,
2003; Yang and Cox, 2004). However, accurate cohesive model analyses of complex laminated structures
may comprise 10° degrees of freedom and do not yield analytical results, even in limits. Beam theory
and computationally intensive cohesive element methods may prove complementary.

6.2. Towards structural design concepts

Many configurations of loads and boundary conditions arise in structures other than the cantilever case
studied here. Nevertheless, the cantilever case suggests some principles concerning the role of the multiplic-
ity of delaminations in structural performance that may prove generally applicable to cases of mixed shear
and bending.

Assume that residual strength following delamination damage declines as the size of the cracks increases
(e.g. Fig. 4). Then the results for uniformly spaced cracks (Eq. (12)) suggest that, to enhance residual
strength, material conditions that favour greater number of cracks uniformly distributed through a structure
are to be avoided. On the other hand, if the cracks are confined to a band of limited width, then resistance to
growth rises with their number. Protection against long cracks might therefore be sought by deliberately
introducing multiple weaker planes within a limited band in the material. Of course, the effect of such a strat-
egy on other failure routes must also be considered. For instance by tailoring the material for increased resid-
ual strength the ductility of the structure is reduced, leading to a more brittle failure of the structure.

The case study of the system of two cracks shows that interaction effects are strong. Cases in which one
crack shields the other and cases in which it leads to accelerated growth in its partner can be found, depend-
ing on where the two cracks reside in the laminate. The possibility of acceleration implies that design and
life predictions based on solutions for a single crack cannot be safe.

In many cases studied here, the possibility of crack face contact arises. Long zones of crack wake contact
and friction can therefore be expected to be common in structural problems involving shear and bending.
The friction zones will not generally be confined to a near-tip region, in particular one that is sufficiently
small that friction effects could be incorporated by modifying the critical value of the energy release rate.
Rather, the friction contact zone will vary in extent (and possibly in the number of contact domains) with
the crack size and its relation to other cracks. The contact zones must be calculated explicitly. Similar re-
marks will apply to treating through-thickness reinforcement, should it be present. Work is in progress to
investigate these topics.

7. Conclusions

A model has been presented that allows for the analysis of laminated plates with multiple delaminations
deforming in cylindrical bending. The model utilizes the assumptions of classical beam theory, which
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neglects shear and near-tip deformation, and accounts for non-frictional contact between the crack sur-
faces. It has been applied to a cantilever beam with multiple through-width edge delaminations subject
to a concentrated load at its free end. Contact has been simulated using different approaches, uncon-
strained-, constrained- and spring-contact, where the names reflect the approximation used to describe the
displacement field. Finite element analyses applied to a two delamination system show that the spring-con-
tact model is the most accurate; however utilizing it results in a non-linear problem and thus requires a par-
tially numeric solution while the other models result in closed form solutions. The two simpler
approximations give upper and lower bounds of the energy release rate determined by the spring-contact
approximation. In the case of the mode ratio, however they give results that are often qualitatively different
and at times also incorrect. These problems are expected to be compounded in systems of more delamin-
ations with more complicated states of contact. Thus when accurate results are required, the simplified con-
tact approximations should only be used as general bounds and as a first approximation of the regions of
contact for the iterative solution of the spring-contact model.

Analysis of the energy release rate and mode ratio of the delaminations has revealed several key insights
into the behavior of multiply delaminated systems. When delamination growth is considered, a discontinu-
ity in the energy release rate and mode ratio is found when the delaminations reach the same length. This
discontinuity leads to instantaneous shielding or amplification of the energy release rate, eliciting behaviors
such as local snap-back and snap-through instabilities, hyperstrength, crack pull-along and crack arrest. All
of these behaviors are strongly dependent on and controlled by the through-thickness spacing of the
delaminations. The energy release rates of the delaminations are also amplified or shielded when the delam-
inations are not of the same length, again depending on the through-thickness positions of the
delaminations. These effects show some similarity to the effects previously observed in the interaction of
microcracks or of main cracks with clouds of microcracks in infinite media, which can represent damage
in concrete and coarse grain ceramics (Hutchinson, 1987; Rose, 1986; Rubinstein, 1985; Kachanov,
1986; Brencich and Carpinteri, 1996). However in the problem considered here, strong modifications in
the results and more complex behaviors are observed due to the finiteness of the structure.

The through-thickness positions of the delaminations also control the sensitivity of a system of equal
length delaminations to length perturbations. When the delaminations are equally spaced the equality of
length is stable (i.e. simultaneous growth of the delaminations) leading to a more ductile failure; when they
are not, the equality of length is often, but not always, unstable resulting in a more brittle response (i.e.
growth of one or a limited number of delaminations).

While the present study was limited to a system of only two unequal length delaminations, the proposed
model could be applied to analyze systems with a general number of delaminations following the procedure
described in Section 2. Behaviors similar to those of the two-delamination system are expected in a system
with many delaminations, resulting in a macro structural response with a saw-tooth appearance, with re-
peated increases and decreases in critical load as the critical delamination tip grows with and past other
delamination tips in the system. Different boundary and loading conditions from those studied here are ex-
pected to have a mostly quantitative effect on the results and can be easily solved using the same model and
solution procedure. With minimal modification, friction acting in the regions of contact can also be con-
sidered. Its effect will be additional shielding of the energy release rate at the delamination tips.
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Appendix A. Derivation of general solutions for system of coupled differential equations

In this appendix, the general solutions for the system of differential equations, Egs. (7) and (8) are de-
rived, for one free segment and for 2 and 3 beam segments in contact.

A.1. Single beam segment

For a single beam segment A the governing differential equations, Egs. (7) and (8), are

E[AWA‘xxxx = 07

A.l
EAA”A,xx = 0 ( )
the general solutions of this system of equation is
WA(.X') = C1 + sz + C3X2 + C4)C37 (AZ)

uy(x) = Cs + Cex,

where the C’s are unknown constants of integration.
A.2. Two beam segments in contact

For two beam segments 4 and B in contact, the governing differential equations, Eqgs. (7) and (8) are

E[AWA,XXXX + kA,B(WA - WB) = 07

EAA”Axx = 07 (A 3)
E[BWB,xxxx - kAAB(WA - WB) = 07 .
EAB“B,XX = 07

where k4 p is given by Eq. (5). Solutions of the form:
wa(x) = 4, e, wp(x) = A, e (A.4)

are sought. The resulting algebraic equation, determined by substitution of Eq. (A.4) into Egs. (A.3) and
subsequent elimination of 4, or A4, is

KK (i + 4 ;) e =0, (A.5)

where
afkap (1 1

Bas = \/ 4 (EIA +EIB>' (A.6)
The relationship between the unknown constants 4; and A4, is

A, Ely ,

—=—kKk"+1. A7

Ay kus (A7)

The 8 roots of Eq. (A.5) are
k=0,0,0,0,=(1£if,5), (A.8)
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where i = v/—1. The general solution of this system of differential equations is therefore
wy(x) = El4 eﬂA=3x(C1 cos B4 px + Cysin B px)
+ ElLe P157(Cycos B, px + Cysin B, 5x) + Csx® + Cox” + Crx + Cs,
uy(x) = Co + Cyox
wp(x) = Elgel15*(Cy cos B, 5x + Casin B 5x),
+ Elge "5 (Cy cos B, yx + Cysin B, 5x) + Csx’ + Cox” + Cox + Cs

uy(x) = Cyy + Cppx.

A.3. Three beam segments in contact

The governing differential equations for three beam segments 4, B and C in contact are

El W o + kap(wyg —wg) =0,
EAqug. =0,
EIgWp xxer + kg c(Wp —we) = kypg(wa — wg),
EABMB,xx =0,
EIcWe xxe — kpc(wp —we) =0,
Edcucy = 0.

The ks are given by Eq. (A.5). Solutions of the form
wa(x) =41, wp(x) =48, we(x) = 43

are sought. The resulting algebraic equation for determination of x is
k(i + OCA,B,CK4 +Va8c)€" =0,

where

o =k L+L +k L+L
Yape =Kas\ gr T ELL BC\Ely " Elc)

1 1 1
) = k k '
YaBc = KaBKBC (EIAEIB + EIEl + EIBEIC)

The relationships between the unknown constants A4;, 4, and A5 are

A EI

e ¢

Ay kpc

Ay EIEl: (1 1 ) .

— =+ —(Elg +El;) +—FEI; |" + 1.
Ay kygkpc kA,c( s +Elc) ksc €

The 12 roots of Eq. (A.13) are

(1 1 14
k=0,0,0,0,4(1%1) (205/1,3@ j:E ,/ocf,)B_’C — 4yA‘B‘C> .

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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The general solutions of the system of equations is therefore:

wy(x) = Cy + Cox + Cix? + Oy
+ pye VP (Cs sin ¢/pox + Cg cos /prx) + pye VP (Cysin ¢/prx + Cg cos /ppx)
+ pye” VP (Cysin /p1x + Ciocos /p1x) + pye” VP (Cyy sin {/pyx + Cia cos /pyx),

wa(x) = C; + Cox + C3x* + Cyx’
+ pee VP (Cs sin {/pyx + Co 008 /pax) + pse VP (Cy sin /pyx + Cy cos /prx) (A17)
+ pse” <1/”_1'”(C9 sin y/px + Cio €08 {/p1x) + pge~ WX(C“ sin {/p,x + C12 €08 {/p,x),

we(x) = Cp + Cox + Cax* + Cyx?
+ e V72*(Cs sin ¢/pyx + Cg cos /pyx) + e VP (Cy sin ¢/prx + Cs cos /prx)
+e” WX(Cg sin /p1x 4+ Cigcos /prx) + €~ WX(C” sin {/p,x + C12 €08 {/p,x),

where

1
P1, P2 = gOCA.,B,C + \/O‘i,B,c - 4kA.,BkB,CVA,B,C7

_ 16EIElcpT g Elsksc + Elckyc + Elckys

= +1,
P sk Kasksc P
(A.18)
 16EIzElcp3 B 4E13k3‘c + Elckgc + Elcky s {
P sk kasksc P2
_q_Elc _ 1 _Elc
Ps ks c P, Ps k. pa-

Appendix B. Solutions for n equal length cracks

The solution for the system of 7 equal length cracks is determined by application of the boundary con-
ditions Eq. (10) and continuity conditions Eq. (11). The general solutions for the intact beam segment, with

index k = 0, and each of the beam segments, with indices k = 1,...,n + 1, in the delaminated region using
the unconstrained-contact model are given by Eq. (A.2):
wk(x) = CkJ —+ Ck,2x + CkA3x2 —+ Ck<’4)€3 (Bl)
the 4(n + 1) constants of integration are
1 PL 1 P
Co1=Cpr=0, Co3==— =———
0,1 0,2 ) 0,3 2 E[() ) 0.4 6 E]07
P 5 n+1 1 1
Cii==QRa+L)(L— —_—
k=g (2a + L)( a) (j_l El, EI())’
B.2
T T TN TN LB T L)
PL n+1 l P n+1 1
Ck3:_ e C0,4:__ 7 k 17 7l/l+1
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The constants for each of the segments in the cracked region, Cy 1, Ci», Ci 3, Ci 4, are identical, thus the
deflections of the beam segments in the cracked region are the same. Therefore the other two contact
approximations, the constrained-contact and the spring-contact yield the same solution.

The solution for the beam with n equal length cracks could also be determined by considering in the
cracked region an equivalent intact beam with a reduced bending moment of inertia /* = Z;':ll ;. This is
also true in general under the assumptions of the constrained-contact model when the n cracks have arbi-
trary lengths. In this case, the beam is divided up into segments, each with a reduced bending moment of
inertia determined by the sum of the bending moments of inertia of the delaminated sublaminates forming
that segment.

The total potential energy IT of the system is

1P P31 1
O _ L , B.3
6 El, 6 (}ZI: EI, El, (B.3)

Appendix C. Stability analysis of a cantilever beam with n equal length, equally spaced cracks

The stability of the equality of length of n equally spaced cracks in a cantilever beam is analyzed here
using the assumptions of the unconstrained-contact model. If a positive perturbation Aa of crack m is con-
sidered, the energy release rate for crack m is

e L
where

71 = 6(m* —2m*N + mA(N* = 3) + 3mN — N?),

% = 3(3m* = 3mN + N?),

TN

N=n+1.
The energy release rate for each of the remaining n-1 cracks is

e (), “

0@+ 7(a+ Aa)

where
1, 1
X4 =N _§N +§X2+X1+1 ;

2
75 = —§N2(N2 —12) + 2002 + 122+ 301),

2 5
Lo = —§N2<N2 —EXz) +4%, + Sy
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The ratio of energy release rates, Eq. (C.1) by Eq. (C.2), taking the limit as Aa — 0 is

ﬁ_m(N—m)(N—2) (X3+6X1+3X2) ( Z—mn+2n—m+1+m?)(n—1)
Y N? Ya s+ e (—m? +mn+m—1)(n+1)

(C.3)

The equality of length is stable if, for n > 2, 4,,/%; < 1. This condition is checked by verifying it at the
extremum in terms of m and at the boundaries for m = 1, n. This yields
Gy 3 G Y, n

Y, n+3’ Y, Y, (n_|_1)2 (C 5)

which are always less than 1 for n > 2.
If a negative perturbation Aa of crack m is considered then the energy release rate for crack m is

4,Eh  (a—Aa\’ 144N2ab
P ( h > (BN —2)(a—Aa)’ + (N +6)a®) (C.6)

The energy release rate for each of the remaining n — 1 cracks is

G.Eh (a)z 75 [(N + 6)a® + 6(N — 2)a*(a — Aa)’] + 9y(a — Aa)® )
P> h (3(N —2)(a — Aa)’ + (N + 6)a®)’ ’ '

where

77 = (N? +2N +3),

XS = (N3 _N+2).
The ratio of energy release rates, Eq. (C.6) by Eq. (C.7), taking the limit as Aa — 0 is

2
G 144N 3n+3 (C.8)

§:X7(7N+6)+918:2n+3'

The equality of length is stable if, for n > 2, 4,,/9, > 1, which clearly is satisfied by Eq. (C.8). Thus the
equality of length is stable for n equally spaced cracks.

Appendix D. Energy release rate expressions for a cantilever beam with two delaminations

The expressions for the normalized energy release rate for the upper and lower delamination, %y and %
for the cantilever beam of Fig. 5 are presented here. When the upper delamination is longer than the lower,
ay > ap, Fig. 5a, the solution shows that there is contact along the delamination surfaces. The normalized
energy release rates for the upper and lower delamination have been determined in closed form for the
unconstrained- and constrained-contact models. The energy release rate for the spring-contact model is deter-
mined through the numerical solution of the problem and application of Eq. (9a).

For the constrained-contact model the energy release rates for ay > ay, are

gUEh ay 2 H3(1 —H3) >
—— =) |z—5————— D.1
P? (h) (3H§—3H3+1 ’ (D-1)

2

Hs(1 — H3)(1 — Hy — H)
P? ’

h) ((3H§ —3H; + 1)(1 = 3(H; + Hs)(HsH; + 1) + 3(Hs + Hs)?)
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where Hz = h3/h and Hs = hs/h. For the unconstrained-contact model the energy release rates for ay > ap
are

YuEh _ 18(“—U)2 Hy(1 = H3) (i (au/h)° + paav/h) (a/h)’ + y3(av/h)°) (D3)
P h (ya(au/h)’ +ys(a/h)’)’ ’

G Eh | ran\2 ((au/h)°Hs(1 — H3)’ (1 — Hy — Hs),

== 18(7> : - , (D.4)
P (valau/h)” + ps(aL/h)")
where the constants yi,...,7¢ depend on the through-thickness positions of the cracks and are

71 = (3H? — 3H; 4+ 1)(H2 + 3H2 4+ 3H3Hs — 2H5 — 3Hs + 1),

2 = 6HsH3(1 — Hy — Hs)(H3 + 3H2 + 3H3Hs — 2H; — 3Hs + 1),

ys = 3HIH(1 — Hy — Hs)*(H3 + H3 + 1), (D.5)

vs = —(3H3 — 3H5 + 1)(H; + 3H? + 3H3Hs — 2Hs — 3Hs + 1),
s = —3HsH3(1 — Hsy — Hs).

When the lower delamination is longer than the upper delamination, a; > ay Fig. 5b, the solution shows
that there is opening along the lower delamination face, and no contact along the upper delamination face,
namely the two upper beam segments have the same vertical deflection. Therefore, the spring- and uncon-
strained-contact models lead to the same solution. The constrained-contact model, which prevents opening,
leads to a solution that is clearly incorrect in this regime. However, as will be seen later, it is a bound of the
exact solution, which is useful for delamination configurations with more delaminations where the exact
solution is not so obvious. The energy release rates are given by Egs. (D.1)—(D.5) with the indices of crack
positions and lengths reversed, a;, — ay, ay — ar, H3 — Hs and Hs — Hj.

When the delaminations have the same length, the energy release rate of each delamination when the
delaminations propagate simultaneously, %3, is given by Eq. (12).

As for the case of equal length delaminations, Fig. 3, maps can be constructed for a general through-
thickness distribution and lengths of the delaminations that show regions in which the energy release rate

ay-a,

1 -= A=A, = a, >a; 13
h au
0.8 — A=A =% g e g
a, :
0.6{2 ©5 A=0 %=% gei
h h
o4 ho.4
0.2 021 4
0 et 0 -:'_-—"“0-?5-‘-‘3'3-#
0 02 04 06 08 1 0 02 04 06 08 1
a hih hylh

Fig. D.1. Maps of regions of different energy release rates for a system of two unequal length cracks (schematic of Fig. 5):
(a) unconstrained model, (b) constrained model.
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of one of the cracks is higher or lower than that of the other crack. Maps for the constrained- and uncon-
strained-contact models are shown in Fig. D.1.

The maps depend on the through-thickness position of the two cracks and incorporate contours of equal
% of both cracks. The contours depend on the relative length of the two cracks. Dashed contours corre-
spond to Ay = (ay — ay)/ay and are to be used when ay >ap. Solid contours correspond to
Ay, = (ap, — ay)/ay, and are to be used when a; > ay. The map in Fig. D.la has been constructed using
the unconstrained-contact model and the map in Fig. D.1b using the constrained-contact model. A more
complicated map, depending also on the length of the cracks, can be constructed using the spring-contact
model.

The shaded region in each figure refers to cracks of the same length, Ay = A = 0, and define configu-
rations for which the energy release rate of each crack when the cracks propagate simultaneously, ¥y given
by Eq. (12), is maximum (the shaded region in Fig. D.la coincides with that of Fig. 3). Points to the left or
above the contour corresponding to the relative length of the two cracks define through-thickness distribu-
tions of the cracks for which the upper crack has the higher energy release rate. Points below or to the right
of the contour define through-thickness distributions of the cracks for which the lower crack has the higher
energy release rate. The evolution of the cracks can be followed in this diagram by updating the contour
from that corresponding to the current 4, to the configuration reached by the last crack growth event.
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